<table>
<thead>
<tr>
<th>PG 4</th>
<th>Profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 20</td>
<td>Wedges and Seals</td>
</tr>
<tr>
<td>PG 21</td>
<td>Components</td>
</tr>
<tr>
<td>PG 24</td>
<td>Assembly Details</td>
</tr>
<tr>
<td>PG 28</td>
<td>Cross Sections</td>
</tr>
<tr>
<td>PG 45</td>
<td>Machining Details</td>
</tr>
<tr>
<td>PG 58</td>
<td>Performance Data</td>
</tr>
</tbody>
</table>

DISCLAIMER

Whilst best efforts have been made to ensure the details contained herein are accurate and correct, Wintec Systems is not responsible for any loss or damage whatsoever arising as a result of any errors contained in this manual. Interpretation of standards or codes within this manual is Wintec Systems interpretation of such codes. Responsibility for code compliance remains with the user of this manual. In some cases product specifications may vary without notice. Users should not act or rely upon any information contained in this manual without obtaining appropriate professional advice relating to their particular circumstances. To the maximum extent permitted by law Wintec Systems disclaims all liability for loss or damage suffered by anyone who acts or fails to act in reliance of this manual.
WASF4011
Plain Frame
AP = 447mm
PP = 201mm
Ixx = 95.5 x 10^3 mm^4
Iyy = 690.9 x 10^3 mm^4
Height = 44.5mm
Width = 101.6mm

WASF4012
Corner Post
AP = 724mm
PP = 206mm
Ixx = 1323.1 x 10^3 mm^4
Iyy = 499.2 x 10^3 mm^4
Height = 101.6mm
Width = 101.6mm

WASF4013
Ramp Threshold
AP = 282mm
PP = 128mm
Ixx = 4.654 x 10^3 mm^4
Iyy = 332.7 x 10^3 mm^4
Height = 15mm
Width = 101.6mm

WASF4014
114mm Subsill
AP = 443mm
PP = 109mm
Ixx = 111.3 x 10^3 mm^4
Iyy = 880.2 x 10^3 mm^4
Height = 50mm
Width = 114.2mm

WASF4015
131mm Subsill
AP = 463mm
PP = 163mm
Ixx = 56.0 x 10^3 mm^4
Iyy = 1060.0 x 10^3 mm^4
Height = 50mm
Width = 114.2mm

WASF4016
Subhead
AP = 443mm
PP = 109mm
Ixx = 111.3 x 10^3 mm^4
Iyy = 880.2 x 10^3 mm^4
Height = 50mm
Width = 114.2mm

WASF4017
Flat Self Mating Mullion
AP = 389mm
PP = 146mm
Ixx = 39.8 x 10^3 mm^4
Iyy = 606.9 x 10^3 mm^4
Height = 41.7mm
Width = 101.6mm

WASF4018
Frame with fixing fin
AP = 651.3mm
PP = 182.6mm
Ixx = 151.3 x 10^3 mm^4
Iyy = 731.7 x 10^3 mm^4
Height = 44.5mm
Width = 101.6mm
WASF4019
Flat Filler with Screw Flutes
- AP = 230mm
- PP = 101mm
- $I_{xx} = 0.597 \times 10^3 \text{ mm}^4$
- $I_{yy} = 183.2 \times 10^3 \text{ mm}^4$
- Height = 7mm
- Width = 90.80mm

WASF4021
Concealed Overhead Closer
- AP = 482mm
- PP = 226mm
- $I_{xx} = 118.0 \times 10^3 \text{ mm}^4$
- $I_{yy} = 818.1 \times 10^3 \text{ mm}^4$
- Height = 50mm
- Width = 1016mm

WASF4022
Concealed Overhead Closer Infill
- AP = 206mm
- PP = 99mm
- $I_{xx} = 0.08 \times 10^3 \text{ mm}^4$
- $I_{yy} = 152.6 \times 10^3 \text{ mm}^4$
- Height = 3.8mm
- Width = 96.9mm

WASF4023
Threshold
- AP = 263mm
- PP = 113mm
- $I_{xx} = 4.209 \times 10^3 \text{ mm}^4$
- $I_{yy} = 330.3 \times 10^3 \text{ mm}^4$
- Height = 12.5mm
- Width = 101.6mm

WASF4024
114mm Subsill with Fin
- AP = 450mm
- PP = 117mm
- $I_{xx} = 42.250 \times 10^3 \text{ mm}^4$
- $I_{yy} = 773.4 \times 10^3 \text{ mm}^4$
- Height = 58mm
- Width = 118.27mm

WASF4020
Plant on Door Stop
- AP = 80mm
- PP = 43mm
- $I_{xx} = 166 \times 10^3 \text{ mm}^4$
- $I_{yy} = 3.11 \times 10^3 \text{ mm}^4$
- Height = 12.70mm
- Width = 21mm

WASF4200
DG Frame
- AP = 603mm
- PP = 175mm
- $I_{xx} = 153.7 \times 10^3 \text{ mm}^4$
- $I_{yy} = 789.6 \times 10^3 \text{ mm}^4$
- Height = 500mm
- Width = 1016mm

WASF4201
DG Sill/Transom
- AP = 480mm
- PP = 196mm
- $I_{xx} = 125.3 \times 10^3 \text{ mm}^4$
- $I_{yy} = 630.0 \times 10^3 \text{ mm}^4$
- Height = 500mm
- Width = 1016mm

WASF4202
DG Sill/Transom Bead
- AP = 196mm
- PP = 59.8mm
- $I_{xx} = 12.7 \times 10^3 \text{ mm}^4$
- $I_{yy} = 190 \times 10^3 \text{ mm}^4$

WASF4203
DG Adapter
- AP = 329mm
- PP = 54.4mm
- $I_{xx} = 16.7 \times 10^3 \text{ mm}^4$
- $I_{yy} = 211.1 \times 10^3 \text{ mm}^4$

WASF4205
DG Pocket Filler
- AP = 175mm
- PP = 37.2mm
- $I_{xx} = 2.83 \times 10^3 \text{ mm}^4$
- $I_{yy} = 15.13 \times 10^3 \text{ mm}^4$
HARVEY COMMERCIAL GLAZING SYSTEM

PRODUCT GUIDE

HARVEY COMMERCIAL GLAZING SYSTEM

WASF4206
DG Mullion Male
- AP = 538mm
- PP = 114mm
- Ixx = 100.5 x 10^3 mm^4
- Iyy = 770.8 x 10^3 mm^4
- Height = 47.5mm
- Width = 101.6mm

WASF4207
DG Mullion Female
- AP = 437mm
- PP = 114mm
- Ixx = 301 x 10^3 mm^4
- Iyy = 544.3 x 10^3 mm^4
- Height = 25.5mm
- Width = 101.6mm

WASF4208
DG Heavy Mullion Male
- AP = 537mm
- PP = 114mm
- Ixx = 112.6 x 10^3 mm^4
- Iyy = 1111.8 x 10^3 mm^4
- Height = 47.5mm
- Width = 101.6mm

WASF4209
DG Heavy Mullion Female
- AP = 572mm
- PP = 114mm
- Ixx = 1616 x 10^3 mm^4
- Iyy = 1501.8 x 10^3 mm^4
- Height = 47.5mm
- Width = 101.6mm

WASF4210
DG Sash Stop
- AP = 100mm
- PP = 93mm
- Ixx = 17.1 x 10^3 mm^4
- Iyy = 15.5 x 10^3 mm^4

WASF4211
45mm Door Stop
- AP = 100mm
- PP = 93mm
- Ixx = 7.36 x 10^3 mm^4
- Iyy = 16.8 x 10^3 mm^4

WASF4218
DG Frame with fixing fin
- AP = 685mm
- PP = 175.6mm
- Ixx = 1913 x 10^3 mm^4
- Iyy = 808.8 x 10^3 mm^4
- Height = 50.0mm
- Width = 101.6mm

WACD0001
Hinge Stile
- AP = 269mm
- PP = 204mm
- Ixx = 813 x 10^3 mm^4
- Iyy = 299.6 x 10^3 mm^4
- Height = 44.5mm
- Width = 67.49mm
Profiles Scale 1:1

WACD0002
Lock Stile
- $AP = 279\mathrm{mm}$
- $PP = 203\mathrm{mm}$
- $I_{xx} = 91.0 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 280.9 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 67.5mm

WACD0003
Pivot Stile
- $AP = 291\mathrm{mm}$
- $PP = 203\mathrm{mm}$
- $I_{xx} = 106.0 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 291.2 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 67.5mm

WACD0004
Slider Stile
- $AP = 279\mathrm{mm}$
- $PP = 202\mathrm{mm}$
- $I_{xx} = 94.7 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 288.4 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 67.5mm

WACD0005
Bi-Fold Stile
- $AP = 282\mathrm{mm}$
- $PP = 207\mathrm{mm}$
- $I_{xx} = 116.2 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 336.5 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 67.5mm

WACD0006
Wide Hinge Stile
- $AP = 363\mathrm{mm}$
- $PP = 298\mathrm{mm}$
- $I_{xx} = 236.9 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 1135.3 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 114.5mm

WACD0007
Wide Lock Stile
- $AP = 373\mathrm{mm}$
- $PP = 309\mathrm{mm}$
- $I_{xx} = 237.1 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 1154.8 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 114.5mm

WACD0009
SG Wide Slider Stile
- $AP = 374\mathrm{mm}$
- $PP = 320\mathrm{mm}$
- $I_{xx} = 239.9 \times 10^{3}\mathrm{mm}^4$
- $I_{yy} = 1419.4 \times 10^{3}\mathrm{mm}^4$
- Height = 44.5mm
- Width = 114.5mm
HARVEY COMMERCIAL GLAZING SYSTEM

WACD0010
Bottom Rail
- AP = 434mm
- PP = 216mm
- Ixx = 605.6 x 10^3 mm^4
- Iyy = 209.3 x 10^3 mm^4
- Height = 44.5mm
- Width = 114.5mm

WACD0008
Double Hinge Door Stop
- AP = 199mm
- PP = 64mm
- Ixx = 122 x 10^3 mm^4
- Iyy = 4.04 x 10^3 mm^4
- Height = 26mm
- Width = 26mm

WACD0011
Top Rail
- AP = 460mm
- PP = 160.9mm
- Ixx = 266 x 10^3 mm^4
- Iyy = 13.15 x 10^3 mm^4
- Height = 78.5mm
- Width = 42mm

WACD0015
Mid Rail
- AP = 763.8mm
- PP = 270.4mm
- Ixx = 259.7 x 10^3 mm^4
- Iyy = 13.38 x 10^3 mm^4
- Height = 42mm
- Width = 124mm

WACD0020
Glazing Bead
- AP = 123mm
- PP = 30.7mm
- Ixx = 3.95 x 10^3 mm^4
- Iyy = 2.10 x 10^3 mm^4

WACD0010
Bottom Rail
- AP = 434mm
- PP = 216mm
- Ixx = 605.6 x 10^3 mm^4
- Iyy = 209.3 x 10^3 mm^4
- Height = 44.5mm
- Width = 114.5mm

WACD0021
DG Hinge Stile
- AP = 312mm
- PP = 204mm
- Ixx = 168 x 10^3 mm^4
- Iyy = 293.6 x 10^3 mm^4
- Height = 44.5mm
- Width = 76.5mm

WACD0022
DG Lock Stile
- AP = 323mm
- PP = 203mm
- Ixx = 165.6 x 10^3 mm^4
- Iyy = 291.5 x 10^3 mm^4
- Height = 44.5mm
- Width = 76.5mm

WACD0023
DG Pivot Stile
- AP = 335mm
- PP = 203mm
- Ixx = 172.7 x 10^3 mm^4
- Iyy = 307.8 x 10^3 mm^4
- Height = 44.5mm
- Width = 76.5mm

WACD0024
DG Slider Stile
- AP = 323mm
- PP = 203mm
- Ixx = 171.5 x 10^3 mm^4
- Iyy = 305.4 x 10^3 mm^4
- Height = 44.5mm
- Width = 76.5mm
PROFILES

WACD0205
DG Bi-Fold Stile
- AP = 326mm
- PP = 207mm
- Ixx = 174.8 x 10^3 mm^4
- Iyy = 322.6 x 10^3 mm^4
- Height = 44.5mm
- Width = 76.5mm

WACD0206
DG Wide Hinge Stile
- AP = 410mm
- PP = 302mm
- Ixx = 257.7 x 10^3 mm^4
- Iyy = 1116.2 x 10^3 mm^4
- Height = 44.5mm
- Width = 125.5mm

WACD0207
DG Wide Lock Stile
- AP = 422mm
- PP = 302mm
- Ixx = 257.3 x 10^3 mm^4
- Iyy = 1106.3 x 10^3 mm^4
- Height = 44.5mm
- Width = 125.5mm

WACD0209
DG Wide Slider Stile
- AP = 422mm
- PP = 325mm
- Ixx = 260.1 x 10^3 mm^4
- Iyy = 1145.5 x 10^3 mm^4
- Height = 44.5mm
- Width = 114.5mm

WACD0210
DG Bottom Rail
- AP = 413mm
- PP = 208mm
- Ixx = 511.7 x 10^3 mm^4
- Iyy = 206.6 x 10^3 mm^4
- Height = 44.5mm
- Width = 70mm

WACD0211
DG Top Rail
- AP = 442.5mm
- PP = 173.4mm
- Ixx = 236.5 x 10^3 mm^4
- Iyy = 150.3 x 10^3 mm^4
- Height = 78.5mm
- Width = 42mm

WACD0215
DG Mid Rail
- AP = 711.4mm
- PP = 247.7mm
- Ixx = 254.4 x 10^3 mm^4
- Iyy = 1144.3 x 10^3 mm^4
- Height = 42mm
- Width = 124mm

WACD0216
DG Glazing Bead
- AP = 100mm
- PP = 22mm
- Ixx = 3.77 x 10^3 mm^4
- Iyy = 1.354 x 10^3 mm^4

WACS007
Commercial Glaze Coupler
- AP = 260mm
- PP = 0mm
- Ixx = 2.02 x 10^3 mm^4
- Iyy = 321.2 x 10^3 mm^4

WACD0220
DG Glazing Bead
- AP = 100mm
- PP = 22mm
- Ixx = 3.77 x 10^3 mm^4
- Iyy = 1.354 x 10^3 mm^4

WAAW100
Awning Head
- AP = 681mm
- PP = 361mm
- Ixx = 148.2 x 10^3 mm^4
- Iyy = 720.6 x 10^3 mm^4
- Height = 72.4mm
- Width = 101.6mm
Wedges & Seals Table

<table>
<thead>
<tr>
<th>Glass Thickness</th>
<th>Roll-in Wedge</th>
<th>Captive Wedge</th>
<th>Roll-in Wedge Both Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>5mm Glass</td>
<td>WINSF-R (Blue)</td>
<td>WINSF-Y (Yellow)</td>
<td>WINSF-R (Blue)</td>
</tr>
<tr>
<td>6mm and 6.38mm Glass</td>
<td>WINSF-R (White)</td>
<td>WINSF-Y (Yellow)</td>
<td>WINSF-R (Yellow)</td>
</tr>
<tr>
<td>8mm and 8.38mm Glass</td>
<td>WINSF-R (Red)</td>
<td>WINSF-Y (Yellow)</td>
<td>WINSF-R (Green)</td>
</tr>
<tr>
<td>10mm and 10.38mm Glass</td>
<td>WINSF-R (Red)</td>
<td>WINSF-Y (Yellow)</td>
<td>WINSF-R (Red)</td>
</tr>
<tr>
<td>24mm Glass</td>
<td>WINSF-R (Red)</td>
<td>WINSF-Y (Yellow)</td>
<td>WINSF-R (Yellow)</td>
</tr>
<tr>
<td>28mm Glass</td>
<td>WINSF-R (Red)</td>
<td>WINSF-Y (Yellow)</td>
<td>WINSF-R (Yellow)</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

- **WINSF-DS** Door Stop
- **WINSF-SS** Mullion Seal
- **WINSF-SS** Subsill Seal
- **SAWO02** QLON Seal
- **SAWO07** FIN Seal
- **WINSF-SH** Subhead Seal
- **W** **W** **CDG** Glazing Channel (channel to suit 10-16mm glass)
- **W** **W** **CDG** Glazing Channel (channel to suit 18-22mm glass)

Note: ** is replaced with glass size (i.e. W10WCDG - 10mm glass)

Components

- **SAWO01M** corner stake
- **SAWO06M** 22mm sash corner stake
- **SAWO16** 22mm sash retainer clip
- **SAWO11** head gasket
- **SAWO12** sill gasket
- **SAWO13** transom gasket
- **SFD068** Fast Fix Stainless Steel Hinge
- **SPIGOTHDKIT** Single Glazed Spigot Kit
- **SPIGOTHDKITG** Double Glazed Spigot Kit
- **WINSF001** Subsill End Caps Black (pair)
- **CHAIN WINDER** to suit 40kg & 60kg sash
- **20-PA50100GU** Twin Wheel Bottom Guide
- **20-PA50100WA** Roller Assembly - 200kg Max
- **20-PA50LLP** Polyethylene Extrusion Jointer
- **20-PA50EC** Polyethylene End Cap
- **20-22-PA50100** Overhead Track Door Stop
COMPONENTS | SINGLE GLAZED SPIGOT KIT

NOTE: 8.5mm diameter hole drilled through centre

SECTION C-C

SIDE VIEW

TOP VIEW

DIA 8.5

SPIGOT DKITS

PACK CONTAINS:
- 4 - SG SPIGOTS
- 4 - MB X 40mm S/S HEX BOLTS
- 4 - MB S/S SPRING WASHERS
- 4 - MB S/S HEX NUTS

COMPONENTS | DOUBLE GLAZED SPIGOT KIT

NOTE: 8.5mm diameter hole drilled through centre

SECTION D-D

SIDE VIEW

TOP VIEW

DIA 8.5

SPIGOT DKITD

PACK CONTAINS:
- 4 - DG SPIGOTS
- 4 - MB X 50mm S/S HEX BOLTS
- 4 - MB S/S SPRING WASHERS
- 4 - MB S/S HEX NUTS
ASSEMBLY DETAILS | SINGLE GLAZED DOOR

ASSEMBLY DETAILS | DOUBLE GLAZED DOOR

NOTE: ADDITIONAL HINGE FOR DOORS OVER 2200mm HEIGHT

OUTSIDE

CORNER ASSEMBLY PLAN VIEW
(SPIGOTHIKITS ASSEMBLY)

SCALE 1:10
The Sub Sill End Cap is a purpose designed component reducing labour time required for the installation and sealing the 10160mm commercial Sub Sill without the need of additional trim angles.

The Sub Sill End Caps are available as a set with 1 left and 1 right end.

Step 1.
Starting from the end of the sub sill, run a full bead of silicone (general purpose non acetic neutral cure) around the edges of the sub sill. Run a close zig zag pattern bead across the bottom face of the sub sill 20mm in from the end. Apply silicone to edges of the sub sill as shown in detail below.

Step 2.
Insert the sub sill end cap into the sub sill and push home. Ensure the silicone has completely sealed off the end of the sub sill. Wipe away any excess silicone making sure that the top face of the end cap and the sill support legs are free of silicone build up.

NOTE:
When applying sealant to Aluminium ensure that Silicon is used for Anodised Aluminium and Polyurethane is used for Powder Coated Aluminium.
CROSS SECTIONS | SASH ONLY - SINGLE GLAZED

- Overall door width: 785mm
- Roll-in wedge
- Overall frame height
- Glass height = daylight + 16mm
- Glass width = daylight + 16mm

CROSS SECTIONS | OPEN OUT - SINGLE GLAZED

- Overall door width: 488mm
- 3mm daylight height
- 6mm daylight width
- Glass height = daylight + 16mm
- Glass width = daylight + 16mm

*4mm for a flush mounted lock
6mm for a face fix striker*
CROSS SECTIONS | OPEN IN - SINGLE GLAZED

OUTSIDE

CROSS SECTIONS | SASH ONLY - DOUBLE GLAZED

OUTSIDE

4mm for a flush mounted lock
6mm for a face fix striker

48mm
3mm
6mm
21mm

OUTSIDE

OVERALL DOOR WIDTH

OVERALL DOOR HEIGHT

GLASS HEIGHT = DAYLIGHT + 24mm

DAYLIGHT HEIGHT

GLASS WIDTH = DAYLIGHT + 24mm
CROSS SECTIONS | PIVOT TOP AND BOTTOM RAILS, AND STILES

OUTSIDE

PAIR OF PIVOT DOORS

OUTSIDE

CROSS SECTIONS | TOP HUNG DOOR - SINGLE GLAZED

SCALE 1:2
FIT LOCK TO DOOR STILE OR FRAME DEPENDING ON REQUIREMENTS

GLASS HEIGHT = DAYLIGHT + 16

DAYLIGHT SIZE

GLASS WIDTH = DAYLIGHT + 16

DOOR WIDTH

58

58

[200kg max sash]
CROSS SECTIONS | AWNING - SINGLE GLAZED

OUTSIDE

DAYLIGHT WIDTH

GLASS WIDTH = DAYLIGHT + 12mm

44.5

OVERALL FRAME WIDTH

GLASS HEIGHT = DAYLIGHT + 20mm

39.5

NOTE: TO SUIT 10 - 16mm GLASS THICKNESS

CROSS SECTIONS | AWNING - DOUBLE GLAZED

OUTSIDE

DAYLIGHT WIDTH

GLASS WIDTH = DAYLIGHT + 20mm

44.5

OVERALL FRAME WIDTH

GLASS HEIGHT = DAYLIGHT + 20mm

39.5

NOTE: TO SUIT 10 - 16mm GLASS THICKNESS

50
MACHINING DETAILS | STANDARD SUB FRAME DRAINAGE JAMB

SCALE 12

NOTE:
DRAIN HOLES ARE UNIVERSAL BETWEEN SINGLE AND DOUBLE GLAZED FRAMES

NOTE:
ALL TRANSOMS ARE BUTT SEALED WITH SEALANT

MACHINING DETAILS | AWNING SASH BOTTOM RAIL DRAINAGE

SCALE 12

WAAW125

10mm

Ø7.0 (2) UNDERSIDE

100mm

RAIL CENTRE LINE

10mm

25mm

100mm

R35mm

2.5mm

2.5mm

R3.5mm

WAAW125
MACHINING DETAILS | AWNING SASH TOP RAIL

12mm CUT OFF

EXAMPLE SHOWN - WAAW124

MACHINING DETAILS | AWNING SASH BOTTOM RAIL

FIXINGS FOR CHAIN WINDER

WAAW124

WAAW125

WAAW126

WAAW154

WAAW156

12mm CUT OFF

SUITES TOP RAILS [WAAW124, WAAW153, WAAW161]
NOTE: CUTOUT IS THE SAME FOR BOTH ENDS

SUITES SUBSILLS [WASF4014, WASF4015 WASF4024]
EXAMPLE SHOWN - WASF4015
These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047.

Where the ultimate limit state wind pressure requirement exceed 6000Pa
Please contact Ullrich Systems for advice.

S = Serviceability limit state wind pressure. U = Ultimate limit state wind pressure.

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
<th>MAXIMUM PRESSURE (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td>2000</td>
<td>S</td>
</tr>
<tr>
<td>2100</td>
<td>S</td>
</tr>
<tr>
<td>2300</td>
<td>S</td>
</tr>
<tr>
<td>2400</td>
<td>S</td>
</tr>
<tr>
<td>2500</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
<th>MAXIMUM PRESSURE (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td>2000</td>
<td>S</td>
</tr>
<tr>
<td>2100</td>
<td>S</td>
</tr>
<tr>
<td>2300</td>
<td>S</td>
</tr>
<tr>
<td>2400</td>
<td>S</td>
</tr>
<tr>
<td>2500</td>
<td>S</td>
</tr>
</tbody>
</table>
MULLION PERFORMANCE CHARTS

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047.

Where the ultimate limit state wind pressure requirement exceed 6000Pa

Please contact Wintec Systems for advice

S = Serviceability limit state wind pressure, U = Ultimate limit state wind pressure

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION HEIGHT</th>
<th>MAXIMUM PRESSURE (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>700</td>
</tr>
<tr>
<td>S</td>
<td>10000</td>
</tr>
<tr>
<td>U</td>
<td>10000</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 10000 9955 8983 8242 7665 7209</td>
</tr>
<tr>
<td>U 10000 10000 10000 10000 10000 10000</td>
</tr>
</tbody>
</table>

MULLION PERFORMANCE CHARTS

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047.

Where the ultimate limit state wind pressure requirement exceed 6000Pa

Please contact Wintec Systems for advice

S = Serviceability limit state wind pressure, U = Ultimate limit state wind pressure

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 5199 4992 4709 4300 3802 3536</td>
</tr>
<tr>
<td>U 5362 5235 5177 4990 4821 4681</td>
</tr>
</tbody>
</table>

MULLION PERFORMANCE CHARTS

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047.

Where the ultimate limit state wind pressure requirement exceed 6000Pa

Please contact Wintec Systems for advice

S = Serviceability limit state wind pressure, U = Ultimate limit state wind pressure

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 9342 9298 9240 9172 9100 9025</td>
</tr>
<tr>
<td>U 9409 9376 9337 9297 9251 9207</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 5975 5765 5579 5415 5266 5134</td>
</tr>
<tr>
<td>U 5810 5665 5528 5395 5268 5145</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 2274 2151 2030 1910 1790 1670</td>
</tr>
<tr>
<td>U 2179 2080 1981 1883 1785 1688</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 1180 1090 1010 930 850 770</td>
</tr>
<tr>
<td>U 1090 1000 910 820 730 640</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 5705 5500 5305 5110 4915 4720</td>
</tr>
<tr>
<td>U 5470 5275 5080 4885 4690 4495</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 4021 3826 3631 3436 3241 3046</td>
</tr>
<tr>
<td>U 3776 3581 3386 3191 2996 2801</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 2319 2124 1929 1734 1539 1344</td>
</tr>
<tr>
<td>U 2129 1934 1739 1544 1349 1154</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 1012 918 824 729 635 541</td>
</tr>
<tr>
<td>U 918 824 729 635 541 447</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 8186 7074 6281 5667 5177 4799</td>
</tr>
<tr>
<td>U 7074 6281 5667 5177 4799 4422</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 4001 3212 2423 1634 0845 0056</td>
</tr>
<tr>
<td>U 3012 2223 1434 0645 0056 0067</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)

<table>
<thead>
<tr>
<th>MULLION SPACING (CENTRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 700 800 900 1000 1100</td>
</tr>
<tr>
<td>S 7372 6352 5336 4320 3304 2288</td>
</tr>
<tr>
<td>U 6352 5336 4320 3304 2288 1272</td>
</tr>
</tbody>
</table>
MULLION PERFORMANCE CHARTS

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047. Please contact Wintec Systems for advice.

Where the ultimate limit state wind pressure requirement exceed 6000Pa

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047. Please contact Wintec Systems for advice.

S = Serviceability limit state wind pressure, U = Ultimate limit state wind pressure.

MULLION SPACING (CENTRES)
MAXIMUM PRESSURE (Pa)

<table>
<thead>
<tr>
<th>MULLION HEIGHT</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2100</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2200</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2300</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2400</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2500</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2600</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2700</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

MULLION SPACING (CENTRES)
MAXIMUM PRESSURE (Pa)

<table>
<thead>
<tr>
<th>MULLION HEIGHT</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2100</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2200</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2300</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2400</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2500</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2600</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2700</td>
<td>S</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

MULLION COMBINATION WAS4/206/5AS4/207

DEFLECTION LIMITED TO SPAN/250

MULLION COMBINATION WAS4/208/5AS4/209

DEFLECTION LIMITED TO SPAN/250
TRANSOM PERFORMANCE CHARTS

TRANSOM COMBINATION WASF4001/WASF4003

- **DEFLECTION LIMITED TO SPAN/250**

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047.

- **Stack Height** = highlight and lowlight heights.
- **Maximum stress using 6063-T6 alloy limited to 190MPa**

<table>
<thead>
<tr>
<th>TRANSOM WIDTH (mm)</th>
<th>STACK HEIGHT</th>
<th>900</th>
<th>1000</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>1200 S</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>900 U</td>
<td>8000</td>
</tr>
<tr>
<td>2100</td>
<td>1500 S</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>900 U</td>
<td>8000</td>
</tr>
</tbody>
</table>

- **Ixx** = 1586.1 x 10^4 mm^4
- **Iyy** = 8104.6 x 10^4 mm^4

TRANSOM PERFORMANCE CHARTS

TRANSOM COMBINATION WASF4201/WASF4203

- **DEFLECTION LIMITED TO SPAN/250**

These tables are based on theoretical section mechanical properties, not on approved tests as specified by AS2047.

- **Stack Height** = highlight and lowlight heights.
- **Maximum stress using 6063-T6 alloy limited to 190MPa**

<table>
<thead>
<tr>
<th>TRANSOM WIDTH (mm)</th>
<th>STACK HEIGHT</th>
<th>900</th>
<th>1000</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>1200 S</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>900 U</td>
<td>8000</td>
</tr>
<tr>
<td>2100</td>
<td>1500 S</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>900 U</td>
<td>8000</td>
</tr>
</tbody>
</table>

- **Ixx** = 1467.2 x 10^4 mm^4
- **Iyy** = 81296 x 10^4 mm^4

Harvey Commercial Glazing System Product Guide
Wintec Systems windows and doors are an all Australian designed and manufactured product, with modern designs and quality finish at the forefront of the Wintec philosophy.

An ongoing commitment to product development and service to our Australia wide fabricator base ensures that no matter where you are, you have access to the latest designs in the Window and Door industry.

CENTRE GLAZED FRAMING FEATURES/ BENEFITS

Centre Glazed Framing Profiles are easy to manufacture and have a flexible range of uses. Our 1016mm framing integrates with our other Wintec architectural systems and our Sub-frame options ensure suitability for various applications both commercial and residential.

Options for both single and double glazing pockets allow for a wide range of glazing from 5mm to 28mm thickness and our 6063 T6 alloy improves the fabrication processes and overall product strength.

With the addition of colour coded glazing wedges, our systems become even easier to identify and select, and to top it off, our secure fit captive wedge improves retention in the glazing pocket.

"BUILDING PRODUCTS BEYOND THE STANDARDS"

WINDOW & DOOR TESTING LABORATORY

The Wintec designed products are tested to Australian standard AS2047 in NATA accredited laboratory No. 14093. This ensures your windows and doors comply with the building code of Australia (BCA) and are suited to your particular location. In line with the BCA requirements Wintec windows and doors carry a 7 year guarantee.